Zadanie 1.

Na podstawie danych z tabeli 1.1 oszacowano uogdlniony model liniowy z linkiem
kanonicznym, zakladajac, ze zmienna objasniana Y podlega rozkladowi Poissona.

Uzyskano nastepujace oszacowania parametrow: 3, = In(3), f; = In(1.5).
Tab. 1.1

a) (2p.) Oblicz dewiancje D tego modelu.
b) (2p.) Oblicz i zinterpretuj warto$¢ d%, gdzie df oznacza licz¢ stopni swobody reszt

(residua degrees of freedom) dla tego modelu. Czy bardzo mata wartos$¢ dﬂf jest
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zawsze dobrg wiadomos$cig? Odpowiedz uzasadnij.

c) (1p.) Wyjasnij, dlaczego dewiancja modelu nasyconego wynosi 0.
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Jest to estymator dyspersji. W dobrze dopasowanym modelu Poissona

oczekujemy de ~ 1. Bardzo mata warto$¢ tego wskaznika nie jest jednak

dobrg wiadomoscig - moze wskazywac na zbyt mate reszty, nadmierne
dopasowanie (overfitting) lub btedng specyfikacje modelu. W efekcie testy
istotnosci mogg by¢ zbyt optymistyczne, a wnioski - mylgce.

Estymowana dyspersja mniejsza od 1 méwi o tym, ze wariancja w
dopasowanym modelu jest za niska, warto$¢ wieksza od 1 méwi o zbyt duzej
wariancji w dopasowanym modelu.

¢)

Model nasycony dokltadnie odtwarza dane — nie ma Zadnych reszt — brak ,straty
dopasowania” — dewiancja = 0.




Zadanie 2.

a) (2p.) Wyjasnij (odwotujac si¢ do odpowiedniego twierdzenia) dlaczego w modelu
POT (Peak Over Threshold) nadwyzki Y = X —u|X > u ponad wysoki prog u
modeluje si¢ uogdlnionym rozktadem Pareto (GPD). Zinterpretuj parametr ksztattu &
(znak 1 konsekwencje dla ,,grubosci” ogona) oraz podaj dwie praktyczne przestanki
wyboru progu u. Odpowiedz ogranicz do kilku precyzyjnych zdan.

b) (3p.) Ponizej przedstawiono trzy wykresy diagnostyczne dla pewnego zbioru szkod
(rys. 2.1-2.3)

Rys. 2.1

Mean-excess plot
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Rys. 2.2
Hill plot
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Rys. 2.3
Pareto QQ-plot w skali log—log dla ogona préby
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e Wybierz konkretny prog u do modelu POT. Wybdr uzasadnij w dwoch do
trzech precyzyjnych zdaniach, odnoszac si¢ do wykreséw przedstawionych na
rysunkach 2.112.2.

e Okresl znak oraz przyblizony zakres wartosci & na podstawie wykresow z
rysunkows 2.2 1 2.3. Jednym zdaniem wyjasnij, co to oznacza dla tempa
wzrostu wysokich kwantyli (np. VaR 995 ).

Uzycie uogdlnionego rozktadu Pareto (GPD) do modelowania nadwyzki Y =
X — u|X > u ponad wysoki prog © w modelu POT (Peak Over Threshold)
jest uzasadnione twierdzeniem Pickandsa-Balkemy-de Haana. Twierdzenie

to wskazuje, ze dla odpowiednio wysokich progdéw u, rozktad nadwyzek

ponad ten prég moze by¢ dobrze przyblizony przez uogdlniony rozktad
Pareto.




Parametr ksztattu £ (nazywany réwniez indeksem ogona lub indeksem
wartosci ekstremalnej) okresla zachowanie ogona rozktadu:

e £ > (0: odpowiada rozktadom o grubych ogonach (heavy-tailed).

Wskazuje to, ze ogon zanika wolno, jak w przypadku funkcji
potegowej.
« £ = 0: granica wyktadnicza, odpowiada rozktadom o lekkich ogonach.
e £ < 0: Odpowiada rozktadom o ograniczonym z géry nos$niku (krétkim
ogonie).

Dwie praktyczne przestanki przy wyborze progu u wynikajg z kompromisu
miedzy obcigzeniem a wariancja:

1. Na wykresie Mean-excess plot od danego rozpoczyna si¢ stabilny, w
przyblizeniu liniowy trend wzrostowy.

2. Na wykresie Hilla estymator parametru ksztattu stabilizuje si¢ w
pewnym ptaskim regionie, co wskazuje na znalezienie wtasciwego
poczagtku ogona rozktadu.

Odp. b)

e  Wybor progu:

o Napodstawie rys. 2.1 prég u mozna wskazac na poziomie 74-76. Wykres
przechodzi w odcinek prawie liniowy o dodatnim nachyleniu — to sygnat,
ze nadwyzki powyzej u sa dobrze przyblizane GPD.

o Na podstawie rys. 2.2 prog u mozna wskazac na ,,pétce” oscyluje wokoét
wartosci okoto 0.29 (k = 150).

e Znak oraz przyblizony zakres wartosci &:

o & >0 (cigzki ogon), & = 0.28 — 0.31

o Hill plot (rys. 2.2) na ,potce” oscyluje wokol wartosci okoto 0.29, co
sugeruje ¢ rzedu 0.28-0.31. Z kolei, Pareto QQ-plot (log—log) (rys. 2.3)
jest zblizony do linii prostej o dodatnim nachyleniu w ogonie; dodatnie
nachylenie 1 dobra liniowos$¢ na skali log—log sa charakterystyczne dla
ogonow Pareto-podobnych (¢ > 0).

e Konsekwencja dla wysokich kwantyli: Dla § > 0 wysokie kwantyle (np. VaR,,)
rosng szybko w miar¢ zblizania si¢ a do 1, im wigksza &, tym szybszy wzrost.



Zadanie 3.

W pewnym zaktadzie ubezpieczen przeprowadzono kampani¢ promujaca nowy produkt.
Jej skutecznos$¢ (,,tak/nie”) analizowano za pomoca losowo dobranej proby n = 5000
ubezpieczonych. Niech m; oznacza prawdopodobienstwo, Ze i-ty ubezpieczony kupi nowy
produkt. Te indywidualne prawdopodobienstwa modelowano za pomoca regres;ji
logistycznej, wykorzystujac dwie cechy objasniajagce: wiek (wiek - zmienna iloSciowa w

latach) oraz region (region - kategorie: A, B, C).

a) (2p.) Oszacowano nastgpujacy model M1:

Coefficients:
Estimate Std.
(Intercept) -2.59980 0
wiek 0.19886 0
regionB 0.05896 0
regionC -0.14887 0
Null deviance: 2598.0
Residual deviance: 2580.7

AIC: 2588.7

e Podaj wiersz x; macierzy X (modelu M1) dla 35-letniego ubezpieczonego z

regionu B.

Error z value

.07922 -32.
.04997 3
.12383 0.
+1:5132 =0,
on 4999
on 4996

e Zinterpretuj oszacowane parametry.

b) (3p.) Z kolei, oszacowano nast¢pujacy model M2, w ktérym uwzgledniono interakcje

pomig¢dzy wiekiem a regionem:

Estimate Std.

Coefficients:

(Intercept) =2
wiek 0.
regionB 0.
regionC -0.
wiek:regionB =05
wiek:regionC 0

Null deviance:
Residual deviance:

AIC: 2578.3

e Sformutuj odpowiednie hipotezy H, i H, (werbalnie i matematycznie), aby
sprawdzi¢, czy interakcja pomigdzy wiekiem a regionem ma wplyw na
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prawdopodobienstwo, ze ubezpieczony nabedzie produkt.

e Zaproponuj test, ktorym — korzystajac z podanych wynikow z R — mozna
wyznaczy¢ statystyke testowa. Jaki (asymptotyczny) rozklad ma ta statystyka

testowa?

e Oblicz statystyke testowa i1 podaj decyzj¢ testowa na poziomie istotnosci a =

0.05.



Odp. a)
Kodowanie w M1. Z tabeli wspotczynnikéw: (Intercept, wiek, regionB,
regionC wnika, ze region A jest kategorig referencyjna, a regionB, regionC to
zmienne zero—jedynkowe. Zmienna wiek jest ilo§ciowa (w latach).
Wiersz macierzy X dla 35-latka z regionu B:

x; =[1, 35, 1, 0]
Interpretacja parametrow (M1):

e wiek: 0.19886. Kazdy dodatkowy rok zwigksza log-szanse o 0.1989, czyli
iloraz szans exp(0.19886) ~ 1.22 (ok. +22% na rok), przy ustalonym regionie.
Wspoélezynnik jest istotny.

e regionB:0.05896. W regionie B iloraz szans jest rowny exp(0.05896) =
1.06. Szanse, ze ubezpieczony z regionu B kupi nowy produkt sg o ok. 6%
wicksze niz w ubezpieczonego z regionu referencyjnego A (efekt jednak jest
nieistotny, p = 0.63).

e regionC: -0.14887. W regionie C iloraz szans jest rowny
exp(—0.14887) = 0.86. Szanse, ze ubezpieczony z regionu C kupi nowy
produkt sa o ok. 14% nizsze niz w ubezpieczonego z regionu referencyjnego A
(efekt jednak jest nieistotny, p =~ 0.33).

Odp. b)
Niech yg 1 Y. oznaczaja parametry w modelu M2 dotyczace interakcji wieku z
odpowiednio regionem B i regionem C.

Hipotezy:
e Hj: brak interakcji wieku z regionem - parametry interakcji sg rowne 0, tj. yp =
Ye=0

e H;: co najmniej jedna interakcja jest rézna od zera, tj. (¥p, ¥c) # (0,0).

Proponowany test: Test ilorazu wiarygodnos$ci (LRT) oparty na roznicy dewiancji modeli
zagniezdzonych

Statystyka testowa:
T = Dy1 — Du
T~xZ, gdzie stopnie swobody v =dfy; — dfy, = liczba dodanych parametréw

Wartosc¢ statystyki testowej:

T = 2580.7 — 2566.3 =144, v=2
Warto$¢ krytyczna testu (odczytana z tablicy d, dla @ = 0.05iv = 2 ) wynosi 5.991.
Poniewaz T > 5.991, hipoteze H, odrzucamy.

Whniosek: Interakcja wiek x region istotnie poprawia dopasowanie — efekt wieku zalezy
od regionu.



Zadanie 4.

a)

b)

a) (i) Kalibracja parametrow modelu

(2p.) Wskaz, w ktorych etapach procesu modelowania ryzyka: (i) kalibracja
parametrow; (1) wycena/ustalanie sktadek; (ii1) kalkulacja kapitatu (np. VaR/TVaR,
SCR); (1v) stress testy/scenariusze, metoda Monte Carlo jest szczeg6lnie uzyteczna?
Dla jednego ze wskazanych etapow podaj krotkie uzasadnienie (2-3 zdania),
wskazujac konkretny powdd (np. zlozono$¢ modelu, brak formul zamknietych,
zaleznosci/ogony, nieliniowe wyplaty, itp.).

(3p.) Opisz schemat estymacji metodg Monte Carlo skladki m = E[(S — d)™]
dlaS = YN, X; (gdzie N — zmienna losowa dla liczby szkéd w okresie, X; — zmienne
losowe dla wysokosci szkod, d - prog):

e co losujemy i w jakiej kolejnosci,

e jak definiujemy estymator 7 i jak szacujemy jego niepewnos¢,

e w jednym zdaniu wskaz, jak w praktyce uwzglednia si¢ zalezno$ci miedzy

szkodami w tym schemacie.

Kalibracja to proces dopasowywania parametréw modelu statystycznego do
danych historycznych w taki sposéb, aby model jak najlepiej odzwierciedlat
rzeczywisto$é. W przypadku prostych modeli parametry mozna estymowac
analitycznie (np. metodg najwigkszej wiarygodnosci). Jednak w ztozonych
modelach funkcja wiarygodnosci moze by¢ niemozliwa do bezposredniej
maksymalizacji.

Metoda Monte Carlo jest szczegdlnie uzyteczna, gdy nie ma zamknietego
wzoru na wiarygodnos¢ albo model obejmuje zaleznosci i ciezkie ogony (np.
kopule, mieszaniny,cenzurowanie). Umozliwia symulacyjng estymacje
parametréw (np. MLE wspierane symulacjg, indirect inference czy
Approximate Bayesian Computation) nawet wtedy, gdy gestos¢ jest trudna
do zapisania. Dzigki temu mozna dopasowac realistyczne modele bez
upraszczania zatozen.

(ii) Wycena i ustalanie skfadek

Wycena produktéw ubezpieczeniowych (ustalanie sktadki) wymaga
oszacowania wartosci oczekiwanej przysztych strat (tzw. sktadki czystej).
Dla prostych produktéw mozna to zrobi¢ analitycznie. Jednak wiele
nowoczesnych produktéw ma skomplikowang strukture, ktéra uniemozliwia
proste obliczenia.

Metoda Monte Carlo pozwala na symulacje ogromnej liczby mozliwych
scenariuszy przysztych strat. Dla kazdego scenariusza obliczana jest

warto$é wyptaty z ubezpieczenia. Srednia arytmetyczna z tych wyptat jest

estymatorem wartosci oczekiwanej straty. Pozwala to na wycene nawet
najbardziej skomplikowanych instrumentéw. Metoda sprawdza sie doskonale
przy wycenie produktéw, ktérych wartos¢ zalezy od wielu skorelowanych
czynnikéw ryzyka (np. stopy procentowe, inflacja, kursy walut) oraz zawiera
opcje, franszyzy, limity i inne nieliniowosci. Przyktadem moze by¢ wycena
obligacji katastroficznych (CAT bonds), gdzie wyptata zalezy od wystgpienia
i skali zdarzenia naturalnego (np. huraganu), ktérego modelowanie jest
niezwykle ztozone.



(iii) Kalkulacja kapitatu (VaR/TVaR, SCR)

Instytucje finansowe muszg utrzymywac kapitat na pokrycie
nieoczekiwanych strat. Miary ryzyka takie jak Value-at-Risk (VaR) i Tail
Value-at-Risk (TVaR) sg standardem w ocenie wymogoéw kapitatowych (np.
SCR w Solvency Il). Obliczenie tych miar wymaga znajomosci rozktadu
prawdopodobienstwa zagregowanych strat catego portfela, co jest trywialne
tylko w teorii.

Agregacja wielu zaleznych od siebie ryzyk i modelowanie ogondéw rozktadu.
Analityczne wyznaczenie rozktadu sumy wielu zaleznych zmiennych
losowych o réznych rozktadach (cze¢sto z grubymi ogonami) jest praktycznie
niemozliwe. Metoda Monte Carlo pozwala "brutalng sit3" obliczeniowag
zbudowac ten rozktad i precyzyjnie zmierzy¢ ryzyko w jego ekstremalnych
obszarach (ogonach), co jest kluczowe dla wymogoéw kapitatowych.

(iv) Stress Testy i Analiza Scenariuszy

Stress testy polegajg na ocenie, jak portfel lub cata instytucja zachowa sie w
warunkach ekstremalnych, ale prawdopodobnych kryzyséw (np. krach na
gietdzie, gwattowny wzrost inflacji, wielka powédz). Celem jest zrozumienie
odpornosci na szoki, ktére wykraczajg poza standardowe zatozenia modelu.

Stresy s3 z natury wieloczynnikowe (np. skok czestosci + wysokie szkody +
szok rynkowy) i mogg obejmowac nieliniowe efekty oraz zaleznosci
pomiedzy liniami/rynkami. MC pozwala generowac spéjne scenariusze i
rozktady wynikéw pod narzuconymi szokami, poréwna¢ wptyw na wyniki,
rezerwy, kapitat oraz przeprowadzi¢ odwrotny test warunkéw skrajnych i
analizy wrazliwosci bez przebudowy catego modelu.

1. Co losujemy i w jakiej kolejnosci

Dla $ciezekm = 1,...,n:

1. Liczba szkdd: wylosuj N 5 dopasowanego rozktadu (np.
Poissona, ujemnego dwumianowego).

2. Wysoko$¢ szkdd: wylosuj niezaleznie Xl(m), o ](VT,?,) Z

dopasowanego rozktadu (np. lognormalnego, gamma, Pareto).

3. Agregacija i wyptata: policz S(™ = Efi(;n) Xi(m) oraz Y™ =
(8™ — d)*.

2. Niepewnosé

o Estymator sktadki (MC):




o Niepewnos¢:

NIAGIES \in, gdzie 32 = L. 3" (Y™ —

Przedziat ufnosci dla poziomu 1 — a:

T+ ul_a/2.§ (U1 _q/2 - kwantyl rozktadu normalnego
standardowego).

3. Zaleznosci miedzy szkodami w obrebie portfela, miedzy liniami lub
miedzy IV i X; uwzglednia si¢ na etapie generowania przez wspdiny
czynnik (/atent factor, common shock) lub kopute.




Zadanie 5.

a)
b)

c)

(1p.) Wyjasnij, czym rdzni si¢ pojecie stacjonarnosci w sensie szerokim (weak

stationarity) od stacjonarnos$ci w sensie §cistym (strict stationarity).

(2p.) Podaj wzor na autokowariancje procesu AR(1) i wyjasnij, jak zmienia si¢ wraz

z opdznieniem k.

(2p.) Zadaniem aktuariusza jest wyznaczenie prognozy pewnego szeregu czasowego

Ve, t=1,..30 na okres t =31. W tym celu postanowit zastosowac proste

wygladzanie wykladnicze Browna z parametrem wygladzania A = 0.6.

Wykorzystujac informacje podane w tabeli 5.1:

e Sprawdz jako$¢ modelu wyznaczajac blad MAPE (mean absolute percentage
error) dla prognoz na okresy t = 27, 28, 29, 30.

e Wyznacz prognoze¢ na okres t = 31.

Tab. 5.1
Okres t 27 28 29 30
Wartosé¢ rzeczywista 12 16 15 17
Prognoza 13.354 12.542 14.617

&) Def. Stacjonarnos$¢ w sensie $cistym. Szereg czasowy (Xt)tez jest Scisle

stacjonarny, jesli

d
(th’ ce 7th) = (Xt1+k7 ) th+k)
dla wszystkich t,...,t,,k € Z oraz dla wszystkichn € N.

Def. Stacjonarnos¢ w sensie szerokim/stabym. Szereg czasowy (Xt)teZ jest
stacjonarny kowariancyjnie (lub stabo lub w sensie szerokim), jesli jego dwa
pierwsze momenty istniejg i spetniajg warunki

p(t) =p, tez,

v(t,8) =v(t+k,s+k), t,skelZ.

Szereg czasowy jest Scisle stacjonarny, jesli jego tgczny rozktad
prawdopodobienstwa nie zmienia sie w czasie. Oznacza to, ze dla

dowolnego zbioru punktéw w czasie, tgczny rozktad wartosci w tych

punktach jest taki sam, jak dla dowolnego innego zbioru punktéw
przesunigtych w czasie o statg wartos$¢.

Szereg czasowy jest stacjonarny w sensie szerokim, jesli jego pierwsze dwa
momenty (warto$¢ oczekiwana i kowariancja) sg state w czasie i skoriczone.

Podsumowujac, stacjonarnos¢ Scista jest silniejszym i bardziej ogélnym
pojeciem, ktére gwarantuje niezmiennos¢ wszystkich charakterystyk
statystycznych procesu w czasie. Stacjonarnos$¢ w sensie szerokim jest
stabszym warunkiem, ograniczajgcym sie do stabilnos$ci wartosci
oczekiwanej, wariancji i autokowariancji, co w wielu praktycznych
zastosowaniach jest wystarczajace.



Proces AR(1) jest zdefiniowany réwnaniem:
Xi =901 X1+ €

gdzie €; to proces biatego szumu o wariancji 0'62, a | P1 |< 1 jest
warunkiem stacjonarnosci.

Wzér na funkcje autokowarianciji 'y(k) dla opdznienia (ang. /ag) k jest
nastepujacy:

|1k|0.2
v(k) = 7
(k) 1— ¢}

Warto$¢ bezwzgledna autokowariancji maleje wykfadniczo. Poniewaz dla
stacjonarnego procesu AR(1) musi zachodzi¢ warunek | 1 |< 1, warto$é

| ¢|1 | | maleje do zera w miarg wzrostu k. Oznacza to, ze korelacja miedzy

odlegtymi w czasie obserwacjami jest coraz stabsza.

c) Odp. ¢)

Proste wygladzanie wyktadnicze Browna:
Yis = Aye+ (1= Dye

Stad
y5 =0.6-15+ 0.4-14.617 = 14.847
yfl =0.6-17+0.4-14.847 = 16.139
Btad MAPE:
MAPE = 1 <|12 - 13.354‘ . |16 — 12.542| i |15 — 14.617‘ = |17 - 14.847|) _
4 12 16 15 17 B

= 0.1203



Zadanie 6.
a) (1p.) Na czym polega model quasi-Poissona w uogdlnionych modelach liniowych w
poréwnaniu ze zwyklym modelem Poissona?
b) (2p.) Wyjasnij, jak w przypadku modelu quasi-Poissona nalezy interpretowac
wartos$¢ parametru dyspersji ¢, w szczeg6lnosci gdy:
e ¢p>1
e 0<p<1.
Podaj przyktady przyczyn odpowiadajacych tym dwoém przypadkom (po jednej dla
kazdego).
¢) (2p.) Na podstawie tego samego zbioru danych oszacowano model Poissona i model
quasi-Poissona. Uzyskano nast¢pujace wyniki:

Model Poissona
Call:
glm(formula = y ~ x, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 18 027173 4.250 2.14e-05 ***
X 0.8362 0.3320 2.518 0.0118 ~*

Signif. codes: 0 ‘***r (0,001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 v’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 53.262 on 7 degrees of freedom
Residual deviance: 46.354 on 6 degrees of freedom

Model quasi-Poissona

Call:
glm(formula = y ~ x, family = quasipoisson)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.1787 ? ? ?
X 0.8362 ? ? ?

(Dispersion parameter for quasipoisson family taken to be
7.144573)

Wypowiedz si¢ na temat istotno$ci oszacowanych parametréw w obu modelach
(przyjmij poziom istotnosci réwny 0.05).

&) Model quasi-Poissona w uogdlnionych modelach liniowych dziata podobnie

jak zwykty model Poissona, ale dopuszcza, ze wariancja nie musi by¢ réwna
sredniej. W praktyce oznacza to wprowadzenie parametru dyspersiji, ktory

pozwala modelowa¢ nadmierng lub zbyt matg zmiennos¢ danych (over- lub

under-dispersion) bez zmiany postaci funkgcji linku ani estymatoréw sredniej.



W modelu quasi-Poissona parametr dyspersji ¢ okreéla, jak bardzo
rzeczywista wariancja danych odbiega od tej zaktadanej przez model
Poissona.

e Gdy ¢ > 1 - wystepuje nadmierna zmienno$¢ (overdispersion):
wariancja danych jest wigksza niz $rednia.

Przyktad przyczyny: nieobserwowana heterogenicznos¢ miedzy
polisami. Cze$¢ cech ryzyka nie zostata uwzgledniona w modelu. W
portfelu ubezpieczen komunikacyjnych rézni klienci mogag mie¢
odmienne zwyczaje jazdy, wiek pojazdu czy srodowisko uzytkowania,
ale model moze nie uwzgledniaé tych zmiennych. W efekcie
czestotliwos¢ szkdd miedzy jednostkami o pozornie tych samych
cechach bedzie bardziej zréznicowana niz zaktada model.

Gdy 0 < ¢ < 1 - wystepuje niedostateczna zmiennosé

(underdispersion): dane sg mniej zréznicowane niz przewiduje model
Poissona.

Przyktad przyczyny: agregacja duzej liczby podobnych jednostek
ryzyka (np.portfele ztozone z wielu matych, niezaleznych polis), co

~wygtadza" zmiennos¢ obserwaciji.

Odp. ¢)
W modelu Poissona oba parametry sg statystycznie istotne.

Parametry modelu quasi-Poissona sg takie same jak w modelu Poissona, ale ich bledy
oszacowan SEIPO sa rowne (/¢ - SEPIS (SEPO'S — blad oszacowania parametru w
modelu Poissona).
Z zamieszczonych wynikow dla modelu quasi Poissona wynika, ze \/E = 2.6729.
Zatem bledy oszacowan SE P9 s3 rowne:

e Intercept: 0.2773-2.6729 = 0.7412

e x:0.3320-2.6729 = 0.88740
Stad statystyki z (df = 6, bo 8 obserwacji i 2 parametry)

L1787 _ 1 £90

0.7412
0.8362

= ~ 0.942
0.8874

Wartos¢ krytyczna dla testu dwustronnego na poziomie istotnosci rownym 0.05 wynosi
2.447 (odczytana z tabeli ). Zatem nie ma podstaw do odrzucenia hipotez, ze w modelu

e Intercept: t=

o x:t

quasi Poissona zar6wno wyraz wolny (Intercept), jak 1 parametr stojacy przy
zmiennej x sg rowne zero (sa nieistotne).



Zadanie 7.

a) (2p.) Jakie jest znaczenie porownania krzywych LC[A(X); ] (krzywa Lorenza) i
CClu(X), a(X); ] (krzywa koncentracji) w ocenie adekwatnosci (sprawiedliwos$ci)
systemu taryf w ubezpieczeniach, tzn. zgodnos$ci sktadek [i(X) z rzeczywistym
kosztem ryzyka u(X) w roznych grupach ryzyka?

b) (3p.) Dany jest portfel ztozony z 5 polis (tab. 7.1):

Tab. 7.1
Polisa Koszt u(X) Sktadka fi(X)
1 100 80
2 200 150
3 300 250
4 200 300
] 200 220

Oblicz punkty LC 1 CC dla @ = 0.4 (dwie najmniejsze sktadki). Co uzyskane wyniki
mowig o adekwatnosci taryfikacji w dolnych percentylach portfela?

0*) 1. Diagnoza Adekwatnosci i Sprawiedliwosci Taryfy

Idealna sytuacja to taka, w ktérej obie krzywe niemal si¢ pokrywaja (
LC =~ CC). Oznacza to, ze sktadki fi(X) s niemal idealnie
proporcjonalne do rzeczywistego ryzyka p(X )

Grupy ubezpieczonych, ktére wnoszg tacznie a% catkowitej sktadki,
generujg réwniez okoto a% catkowitych szkéd. Taki system taryfowy
mozna uznac¢ za adekwatny i sprawiedliwy z technicznego punktu
widzenia, poniewaz kazda grupa ryzyka ptaci sktadke odpowiadajgca
jej szkodowosci. Brak jest wowczas systemowego subsydiowania
jednych grup przez drugie.
. Identyfikacja Kierunku i Skali Subsydiowania

Rozbiezno$¢ migdzy krzywymi jest bezposrednig miarg subsydiowania
krzyzowego w portfelu.

Gdy LC > CC: Krzywa Lorenza (sktadek) znajduje si¢ powyzej krzywej
koncentracji (szkéd). Oznacza to, ze dla danego odsetka o
"najtanszych" klientéw, ich skumulowany udziat w catkowitej sktadce
jest wigkszy niz ich skumulowany udziat w szkodach. W efekcie,
segmenty o niskim ryzyku nadptacajg w stosunku do generowanych
przez siebie kosztéw, subsydiujgc grupy o wyzszym ryzyku.

Gdy CC > LC: Krzywa koncentracji jest powyzej krzywej Lorenza.
Oznacza to, ze skumulowane szkody dla segmentéw o najnizszych
sktadkach rosng szybciej niz ich wkfad w pule sktadek. Te segmenty
sg subsydiowane - ptacg za mato w stosunku do generowanego
ryzyka.

Szerokos$¢ luki (odlegtos$¢ w pionie) migdzy krzywymi wizualizuje skale
tego subsydiowania. Duza rozbiezno$¢ wskazuje na powazne
niedopasowanie taryfy.




3. Weryfikacja Zgodnosci Rankingu Ryzyka

Analiza ta odpowiada na fundamentalne pytanie: "Czy porzgdek w
portfelu wedtug wysokosci sktadki f1(X) jest zgodny z porzgdkiem
wedtug rzeczywistej szkodowosci pu(X)?".

Trwate i systematyczne odchylenia krzywych od siebie ujawniajg btedy
w strukturze taryfy. Na przyktad, jesli krzywa CC poczgtkowo biegnie
znacznie powyzej LC, a nastepnie jg przecina i biegnie ponizej,
oznacza to, ze taryfa jest "zbyt ptaska". Klienci o niskim ryzyku ptaca
za duzo (wzglednie), a klienci o wysokim ryzyku za mato, poniewaz
réznicowanie sktadek jest niewystarczajgce.

. Lokalizacja Nieadekwatnos$ci w Portfelu

Analiza krzywych pozwala precyzyjnie zidentyfikowacé, w ktérych
segmentach portfela (okreslonych przez parametr &) wystepuje
najwigksza rozbieznosc¢.

Jesli krzywe znaczgco sig rozchodzg dla niskich wartosci a;, problem
dotyczy segmentu klientéw ptacgcych najnizsze sktadki.

Jesli rozbieznos¢ pojawia sie w Srodkowej czesci wykresu,
nieadekwatnos¢ dotyczy "przecigtnych" klientow.

Jesli luki pojawiajg sie przy wysokich wartosciach «, problem lezy w
segmencie klientéw o najwyzszym ryzyku i najwyzszych sktadkach.

Dzigki temu wiadomo, gdzie doktadnie nalezy wprowadzi¢ korekty
stawek.
. Ocena Ryzyka Modelowego i Btedéw Specyfikaciji

Stabilna, jednokierunkowa réznica miedzy LC a CC jest silnym

sygnatem, ze model taryfowy ﬂ(X) cierpi na btad specyfikaciji. Nie

jest to tylko kwestia drobnej korekty stawek, ale fundamentalnego
problemu z modelem.

Taka sytuacja sugeruje, ze model moze:

o Pomija¢ istotne zmienne objasniajgce ryzyko.

o Uzywaé nieprawidtowych wag lub offsetéw (np. dla ekspozycji).

o Mie¢ btednie zdefiniowang postac¢ funkcyjng (np. liniowg zamiast
nieliniowej).

Réznica LC-CC staje sig¢ wiec miarg ryzyka modelowego, ktéra
wskazuje na koniecznos$¢ rewizji i udoskonalenia samego modelu
predykcyjnego, a nie tylko na prostg kalibracje stawek.




Odp.b)
Obliczenia dla @ = 0.4 (dwie najmniejsze sktadki)

Uporzgdkowanie po i (sktadkach)

Polisa u g
1100 80
2200 150
5200 220
3300 250
4 200 300

Suma sktadek = 1000; suma kosztow = 1000

Wartosci LC i CC
LC[ACX); 0.4] = 222 — 023
AL B2 = T000 =

300
CCLu(X), A(X); 0.4] = 755 = 030

Wsrod 40% polis o najnizszych sktadkach CC > LC (0,30 > 0,23). To oznacza, Ze ta grupa
generuje 30% lacznego kosztu, a wnosi tylko 23% sktadek. W tej grupie polis sktadki sa
zbyt niskie i s3 subsydiowane przez resztg portfela. Taryfikacja w dolnych percentylach
jest nieadekwatna.

0.4-5=3 4‘57,4 tuie Pt po{wg/

LC_WAWMWW _ 30
T Glhowta diddhe T 1000

CC = Sumidovamy, oot 300
(Thority ot = 4000




Zadanie 8.

a) (2p.) Dlaczego zgodnie ze standardami aktuariusz powinien analizowaé jako$¢ i
kompletno$¢ danych wykorzystywanych w kalibracji 1 walidacji modelu?

b) (2p.) W portfelu brakuje pelnych danych o szkodach z lat 2019-2020. Aktuariusz chce
jednak uzy¢ modelu do wyznaczenia rezerw. Opisz dwa mozliwe sposoby radzenia
sobie z brakami danych.

c) (1p.) Wyjasnij, dlaczego transparentne udokumentowanie ograniczen danych jest
istotne w procesie sprawozdawczo$ci i zarzadzania ryzykiem w zaktadzie ubezpieczen.

&) Bez rzetelnych danych kalibracja i walidacja nie majg sensu.

 Btedy, niespdjnosci i outliery znieksztatcajg estymacje, prowadzg do
btednych parametréw i miar dopasowania.

e Braki, zmiany definicji lub niereprezentatywne okresy powodujg
obcigzenie i niestabilno$¢ wynikéw (np. zawyzony VaR, zte stawki).

¢ Analiza jakosci danych pozwala oszacowac¢ niepewnosé,
przeprowadzi¢ analizy wrazliwosci i transparentnie komunikowacé
ograniczenia.

Podsumowujac, kontrola jakosci i kompletnosci danych to warunek
wiarygodnosci wynikéw i decyzji dotyczgcych np. taryfy, rezerwy, kapitatu.

Na przyktad:

» Uzupetnienie brakéw i weryfikacja. Brakujgce lata zastgpujemy danymi
poréwnywalnymi (z innych okreséw/zrédet), korygujac je o inflacje,
kalendarz szkdd czy zmiany procesu likwidacji. Nastgpnie sprawdzamy
spojnosé i jako$é(uzgodnienia, testy racjonalnosci, poréwnania
historyczne), a wyniki prezentujemy wraz z analizg wrazliwosci i
jasnym opisem ograniczen.

Praca na tym, co jest, z marginesem ostroznosci. Model kalibrujemy
wytgcznie na dostgpnych latach, a niepewnos¢ wynikajgcg z luk
kompensujemy konserwatywnymi zatozeniami lub dodatkowymi
marginesami. Efekt brakéw pokazujemy w krétkich
scenariuszach/wrazliwos$ciach i wyraznie dokumentujemy wptyw na
rezerwy.

Transparentne opisanie ograniczen danych chroni przed ,fatszywa precyzjy”
(pozwala wtasciwie odczytaé¢ wyniki, ich niepewnos¢ i zakres stosowalnosci
modelu). Umozliwia Swiadome decyzje: wskazuje, gdzie wyniki sg solidne, a
gdzie wymagajg ostroznosci, margineséw lub scenariuszy. Podnosi
przejrzystos¢ i mozliwos$é¢ audytu, tzn. jasno opisana ,$ciezka danych”
(zrédta, okresy, filtry, transformacje, imputacje), wraz z rejestrem podjetych
decyzji i testow jakosci, umozliwia odtworzenie obliczen, zrozumienie
zastosowanych korekt i oceng ich wptywu na wyniki. Utatwia tez przeglady
wewnetrzne i kontrole zewnetrzne. Dzigki temu raporty sg rzetelne, a
zarzgdzanie ryzykiem bardziej odpowiedzialne i przejrzyste.




Zadanie 9.

a) (1p.) Na ponizszym rysunku (rys. 9.1) przedstawiono trzy wykresy (tj. R1, R2 i R3)
reszt dewiancyjnych versus f. Dopasuj kazdy z nich do nastepujacych diagnoz (i
uzasadnij jednym zdaniem):

(A) - punkty wptywowe/outliers;
(B) - btedna funkcja wariancji/overdispersion;
(C) - brak istotnego predyktora lub zte przeksztalcenie.

Rys. 9.1
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b) (3p.) Zdefiniuj reszt¢ Pearsona 1, ° oraz standaryzowang reszt¢ Pearsona f;
Wykorzystujagc model regresji Poissona (uogoélniony model liniowy ze zmienng
objasniang o rozktadzie Poissona) dla obserwacji y; = 10 otrzymano f; = 12 oraz
h; = 0.10. Oblicz ri(P) oraz T’i(P). Ktorg z tych reszt nalezy uzywa¢ do poréwnan
mi¢dzy obserwacjami 1 dlaczego?

c) (1p.) Wyjasnij, czemu w przypadku uogdlnionego modelu liniowego ze zmienng
objasniang o rozkladzie zero-jedynkowym, histogram reszt zwyklych bywa
dwumodalny.

Odp. a)

e (A) «&R3: Wykres z kilkoma punktami skrajnie oddalonymi (duze |reszty]),
podczas gdy reszta chmury jest ,,prawidlowa’” wokot 0.

e (B) &RI1: Wykres o ksztalcie lejka: rozrzut reszt ro$nie wraz z wartos$cia
dopasowang (1) (heteroscedastycznosc).

e (C) «&R2 Wykres z systematycznym wzorcem (trend, tuk, U-ksztat) wokot 0
zamiast losowej chmury, co $wiadczy o strukturze niewyjasnionej przez model.

Odp. b)
Definicje:
e Reszta Pearsona:

A

r(P) o Yi— Wi

V@D /v

o Standaryzowana reszta Pearsona:
P
.F.l(P) — 13

‘/<I3(1 - hu)’

gdzie h;; to dzwignia (element diagonalny macierzy daszkowej).



Obliczenia dla modelu Poissona:
T =

: V12
7 =~ _ 4609
‘o V1-010

= —0.577

Do poréwnan migdzy obserwacjami lepsza jest standaryzowana reszta Pearsona, bo
koryguje nie tylko heteroscedastyczno$é, ale tez roznice dzwigni. Dzigki temu jej skala
jest bardziej porownywalna w catym zbiorze.
QOdp. ¢)
W GLM z rozktadem Bernoulliego (Binomialny z (m = 1)) zwykla reszta e; = y; — f;,
gdziey; € {0,1}10 < f1; < 1.

e Gdyy; =1, reszta wynosi: 1 — fi; > 0 (dodatnia).

e Gdy y; = 0, reszta wynosi: -fI; (ujemna).
W calej probie dostajemy wigc mieszaning dwoch ,,chmur” wartos$ci: dodatnich i
ujemnych, co naturalnie tworzy dwumodalny histogram. To powod, dla ktérego do
diagnostyki w modelach binarnych preferuje si¢ reszty Pearsona lub reszty dewiancyjne
(standaryzowane), ktore maja bardziej symetryczne i porownywalne rozktady.



Zadanie 10.

a) (2p.) Ponizej (Rys.10.1) widzisz podzial dwuwymiarowej przestrzeni cech
utworzony przez klasyfikator typu CART. Narysuj odpowiadajace mu drzewo
decyzyjne.

Rys.10.1
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b) (1p.) Wyjasnij w jednym zdaniu, czym rézni si¢ proces uczenia kolejnych drzew w
baggingu 1 boostingu.

¢) (1p.) Rozwaz prosta regresj¢: rzeczywista warto$¢ wynosi 100.
Model 1 (bagging): przewiduje 95
Model 2 (boosting): przewiduje 90, a nastgpnie koryguje blad +8 (learning rate =
0.5). Policz ostateczng predykcje dla boosting’u.

d) (1p.) Ktora z tych metod (tj. bagging, boosting) lepiej radzi sobie z redukcja bledu
systematycznego (bias)? Odpowiedz uzasadnij!

AE
ololklc
-
olo

Bagging uczy wiele drzew niezaleznie i réwnolegle na bootstrapowych probkach tych
samych danych, a potem usrednia ich przewidywania, natomiast hoosting uczy drzewa
sekwencyjnie, gdzie kazde kolejne drzewo dopasowuje si¢ do bledow poprzedniego
zespotu (czgsto z matym krokiem — learning rate) i koryguje dotychczasowg prognozg.



Odp. ¢)
y=90+05-8 = 90 + 4 = 94.

Odp. d)

Odpowiedz: Boosting.

Boosting celuje w blad systematyczny (bias) przez sekwencyjne korygowanie
niedoszacowan/przeszacowan poprzednich modeli (uczenie na resztach lub wzdhuz
gradientu straty), podczas gdy bagging przede wszystkim redukuje wariancj¢ przez
usrednianie wielu niezaleznie uczonych modeli.



